Publications

Publications

Keisuke Ishihara, Franziska Decker, Paulo Caldas, James Pelletier, Martin Loose, Jan Brugues, Tim Mitchison.
Spatial Variation of Microtubule Depolymerization in Large Asters Suggests Regulation by MAP Depletion
Under review, bioRxiv (2020).

Víctor M. Hernández-Rocamora, Natalia Baranova, Katharina Peters, Eefjan Breukink, Martin Loose, Waldemar Vollmer.
Real time monitoring of peptidoglycan synthesis by membrane-reconstituted class A penicillin binding proteins.
Under review, bioRxiv (2020).

Christian Duellberg, Albert Auer, Nicola Canigova, Katrin Loibl, Martin Loose.
In vitro reconstitution reveals phosphoinositides as cargo-release factors and activators of the ARF6 GAP ADAP1
In revision (2020).

Paulo Caldas, Philipp Radler, Christoph Sommer and Martin Loose. 
Computational analysis of filament polymerization dynamics in cytoskeletal networks. 
Methods in Cell Biology (2020), vol. 158:145-161.

Urban Bezeljak, Hrushikesh Loya, Beata Kaczmarek, Timothy E. Saunders and Martin Loose. 
Stochastic activation and bistability in a Rab GTPase regulatory network.
PNAS (2020), vol. 117(12):6540-6549.

Natalia Baranova, Philipp Radler, Victor M. Hernandez-Rocamora, Carlos Alfonso, Mar Lopez-Pelegrin, German Rivas, Waldemar Vollmer, Martin Loose.
Diffusion and capture permits dynamic coupling between treadmilling FtsZ filaments and cell division proteins.
Nature Microbiology (2020), vol. 5(3):407-417.

Paulo Caldas, Mar Lopez-Pelegrin, Daniel J.G. Pearce, Nazmi B. Budanur, Jan Brugues, Martin Loose. 
Cooperative ordering of treadmilling filaments in cytoskeletal networks of FtsZ and its crosslinker ZapA.
Nature Communications (2019), vol. 10 (1), 5744.

Natalia Baranova and Martin Loose.
Single molecule measurements to study polymerization dynamics of FtsZ-FtsA copolymers.
Methods in Cell Biology (2017) vol. 137:355-370.  

Martin Loose, Katja Zieske and Petra Schwille.
Reconstitution of protein dynamics involved in bacterial cell division.
Springer Subcellular Biochemistry: Prokaryotic Cytoskeleton (2017), vol. 84:419-444.

Phuong A. Nguyen, Christine M. Field, Aaron C. Groen, Timothy J. Mitchison, Martin Loose. 
Using supported bilayers to study the spatiotemporal organization of membrane-bound proteins. 
Methods in Cell Biology (2015) vol. 128:223-41.

Phuong A. Nguyen*, Aaron C. Groen*, Martin Loose, Keisuke Ishihara, Martin Wühr, Christine M. Field, Timothy J. Mitchison.
Spatial Organization of Cytokinesis Signaling Reconstituted in a Cell-Free System.
Science (2014) vol. 346, 244-247
*equal contribution.

Martin Loose and Timothy J. Mitchison.
The bacterial cell division proteins FtsA and FtsZ self-organize into dynamic cytoskeletal patterns.
Nature Cell Biology (2014) vol. 16, 38–46.

Mike Bonny, Elisabeth Fischer-Friedrich, Martin Loose, Petra Schwille, Karsten Kruse.
Membrane Binding of MinE Allows for a Comprehensive Description of Min-Protein Pattern Formation.
PLoS Comput Biol (2013) vol.9(12): e1003347.

Jakob Schweizer+, Martin Loose+*, Mike Bonny, Ingolf Mönch, Karsten Kruse and Petra Schwille.
Geometry sensing by self-organized protein patterns.
PNAS (2012) vol. 109(38) pp. 15283-8.
*corresponding authors, +equal contribution.

Martin Loose, Karsten Kruse and Petra Schwille.
Protein self-organization: Lessons from the Min system.
Annual Reviews for Biophysics (2011) vol. 40 pp. 31536.

Martin Loose, Elisabeth Fischer-Friedrich, Christoph Herold, Karsten Kruse and Petra Schwille.
Min protein patterns emerge from rapid rebinding and direct membrane interaction of MinE.
Nature Structural & Molecular Biology (2011) vol. 18(5) pp. 577-83.

Ana Dinarina*, Céline Pugieux*, Maria Corral, Martin Loose, Joachim Spatz and François Nédélec.
Chromatin shapes the mitotic spindle.
Cell (2009) vol. 138(3) pp. 502-13.

Martin Loose and Petra Schwille.
Biomimetic membrane systems to study cellular organization.
Journal of Structural Biology (2009) vol. 168(1) pp. 143-51. (Review)

Martin Loose, Elisabeth Fischer-Friedrich, Jonas Ries, Karsten Kruse and Petra Schwille.
Spatial regulators for bacterial cell division self-organize into surface waves in vitro.
Science (2008) vol. 320 (5877) pp. 789-92